Statistical tests for identifying differentially expressed genes in time-course microarray experiments
نویسندگان
چکیده
MOTIVATION Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time, we are interested in testing gene expression profiles for different experimental groups. However, no sophisticated analytic methods have yet been proposed to handle time-course experiment data. RESULTS We propose a statistical test procedure based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Especially, we propose a permutation test which does not require the normality assumption. For this test, we use residuals from the ANOVA model only with time-effects. Using this test, we detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.
منابع مشابه
Identifying Differentially Expressed Genes in Time Course Microarray Data
Identifying differentially expressed (DE) genes across conditions or treatments is a typical problem in microarray experiments. In time course microarray experiments (under two or more conditions/treatments), it is sometimes of interest to identify two classes of DE genes: those with no time-condition interactions (called parallel DE genes, or PDE), and those with time-condition interactions (n...
متن کاملPem: a general statistical approach for identifying differentially expressed genes in time-course cDNA microarray experiment without replicate.
Replication of time series in microarray experiments is costly. To analyze time series data with no replicate, many model-specific approaches have been proposed. However, they fail to identify the genes whose expression patterns do not fit the pre-defined models. Besides, modeling the temporal expression patterns is difficult when the dynamics of gene expression in the experiment is poorly unde...
متن کاملA Statistical Approach for Identifying Differentially Expressed Genes in Time-course Cdna Microarray Experiment without Replicate
Replication of time series in microarray experiments is costly. To analyze time series data with no replicate, many model-specific approaches have been proposed. However, they fail to identify the genes whose expression patterns do not fit the pre-defined models. Besides, modeling the temporal expression patterns is difficult when the dynamics of gene expression in the experiment is poorly unde...
متن کاملComparison of Statistical Data Models for Identifying Differentially Expressed Genes Using a Generalized Likelihood Ratio Test
Currently, statistical techniques for analysis of microarray-generated data sets have deficiencies due to limited understanding of errors inherent in the data. A generalized likelihood ratio (GLR) test based on an error model has been recently proposed to identify differentially expressed genes from microarray experiments. However, the use of different error structures under the GLR test has no...
متن کاملHidden Markov Models for Microarray Time Course Data in Multiple Biological Conditions
Among the first microarray experiments were those measuring expression over time, and time course experiments remain common. Most methods to analyze time course data attempt to group genes sharing similar temporal profiles within a single biological condition. However, with time course data in multiple conditions, a main goal is to identify differential expression patterns over time. An intuiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 19 6 شماره
صفحات -
تاریخ انتشار 2003